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ABSTRACT
◥

Colorectal cancer is among the leading causes of cancer-
associated deaths worldwide. Treatment failure and tumor recur-
rence due to survival of therapy-resistant cancer stem/initiating cells
represent major clinical issues to overcome. In this study, we
identified lysine methyltransferase 9 (KMT9), an obligate hetero-
dimer composed of KMT9a and KMT9b that monomethylates
histone H4 at lysine 12 (H4K12me1), as an important regulator in
colorectal tumorigenesis. KMT9a and KMT9b were overex-
pressed in colorectal cancer and colocalized with H4K12me1 at
promoters of target genes involved in the regulation of prolif-
eration. Ablation of KMT9a drastically reduced colorectal
tumorigenesis in mice and prevented the growth of murine as

well as human patient-derived tumor organoids. Moreover, loss
of KMT9a impaired the maintenance and function of colorectal
cancer stem/initiating cells and induced apoptosis specifically
in this cellular compartment. Together, these data suggest
that KMT9 is an important regulator of colorectal carcinogenesis,
identifying KMT9 as a promising therapeutic target for the
treatment of colorectal cancer.

Significance: The H4K12 methyltransferase KMT9 regulates
tumor cell proliferation and stemness in colorectal cancer, indicat-
ing that targeting KMT9 could be a useful approach for preventing
and treating this disease.

Introduction
Colorectal cancer, which includes hereditary, sporadic, and colitis-

associated forms, is one of the leading causes of cancer-associated
deaths worldwide (1). Four distinct consensus molecular colorectal
cancer subtypes (CMS1–4) have been defined based on gene expres-
sion signatures, DNA methylation status, somatic copy number
alterations, miRNA regulation changes, and presence of genetic
aberrations in tumor suppressor genes [e.g., tumor protein p53 (TP53),
adenomatous polyposis coli protein (APC)] or oncogenes [e.g., kristen
rat sarcoma viral oncogenes (KRAS); refs. 2–6]. To date, systemic
therapeutic options for colorectal cancer include chemotherapy (adju-

vant and neoadjuvant) and to a lesser extent, therapeutic antibodies
directed against growth factor receptors, for example, vascular endo-
thelial growth factor receptor (VEGFR; ref. 7). Despite treatment, 30%
to40%of humanpatients relapse and suffer from tumor recurrence (8).
This has been attributed to the acquirement of genetic aberrations
during therapy and survival of cancer stem/initiating cells (CSC; ref. 9).
CSCs and adult intestinal stem cells in the healthy gut have similar
characteristics with respect to their self-renewal and differentiation
capacity (10). For example, leucine-rich repeat containing g-protein–
coupled receptor 5 (LGR5), a well-established target of the WNT
signalling pathway, is expressed in benign intestinal stem cells and
also defined as a CSC marker because LGR5-expressing (LGR5þ)
tumor cells have a high clonogenic capacity (11–13). Currently,
resistant CSC populations are poorly characterized and therapeutic
strategies for targeting CSCs remain to be identified (14, 15). One
important feature of CSCs is their dynamic ability to switch between
proliferative or differentiated states by modulating gene expression,
which suggests the existence of epigenetic regulation (16).

Histone methyltransferases (HMT) catalyze the transfer of a
methyl group from S-adenosyl-methionine (SAM) to lysine or
arginine residues of histones. Histone methylation regulates various
biological processes including proliferation, cell cycle, and stem-
ness (17). Aberrant expression of histone methytransferases con-
tributes to global changes of the histone methylation landscape,
which has been associated with colorectal cancer development,
progression, and patient survival (18). Therefore, targeting epige-
netic regulators such as HMTs has been proposed as therapeutic
strategy for colorectal cancer (19–21).

Recently, we identified the novel histone lysine methyltransferase
KMT9 (22). KMT9 functions as an obligatory heterodimer composed
of KMT9a (also named N6AMT1) and KMT9b (also named
TRMT112), and their interaction is required for SAM binding and
methyltransferase activity (22). KMT9 monomethylates lysine 12 of
histone H4 (H4K12me1), thereby controlling genes that regulate
proliferation of prostate and lung cancer cells (22, 23). Of note, high
levels of KMT9 have been associated with poor patient survival in
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prostate and lung cancer (22, 23). Here, we investigated the function of
KMT9 in colorectal cancer in vitro in human and murine organoid
systems, as well as in vivo in murine models of colorectal cancer. Our
data demonstrate that KMT9 is an essential regulator of colorectal
cancer cell proliferation and stemness, which establishes KMT9 as a
potential therapeutic target for colorectal cancer.

Materials and Methods
Plasmids

pLenti6-miKMT9a was constructed by inserting the DNA
sequence corresponding to a miRNA against human KMT9a into
pLenti6/V5-DEST according to the manufacturer’s instructions (Life
Technologies). Cloning details can be obtained upon request. Details
regarding the miRNA sequences used for the cloning can be found in
the Supplementary Table S1.

The Cancer Genomes Atlas data analysis
Normalized The Cancer Genomes Atlas (TCGA) gene expression

data were downloaded with TCGA-Assembler Version 2.0 (https://
github.com/compgenome365/TCGA-Assembler-2;.rsem.genes.
normalized_results) and CMS classification of human colorec-
tal cancer samples was calculated using CMScaller, a package in R, as
described previously (24).

Mouse studies
Apcfl/fl p53fl/fl KrasG12D/þ Kmt9afl/fl, Apcfl/fl p53fl/fl KrasG12D/þ

Kmt9aþ/þ, Rosa26-CreERT2xKmt9awt/wt (Kmt9awt/wt), Rosa26-
CreERT2xKmt9afl/fl (Kmt9aind-fl/fl), Villin1 (Vil1)-
CreERT2xKmt9awt/wt (Kmt9aIEC-wt/wt), Villin1 (Vil1)-CreERT2
xKmt9afl/fl (Kmt9aIEC-fl/fl) mice were used for organoids generation
and in vivo experiments. The mice were maintained in a temperature-
and humidity-controlled animal facility with a 12-hour light/dark
cycle and free access to water. Animals were sacrificed using cervical
dislocation and tissues were immediately collected for further
experiments.

Azoxymethane/dextran sodium sulfate treatment
Kmt9awt/wt, Kmt9aind-fl/fl, Kmt9aIEC-wt/wt, and Kmt9aIEC-fl/fl

mice between 10 and 12 weeks of age were given an intraperitoneal
injection of 10 mg/kg body weight of azoxymethane (AOM; Sigma).
Each experiment was conducted using 24 mice from different litters
[n ¼ 12 control mice (Kmt9awt/wt/Kmt9aIEC-wt/wt) and n ¼ 12
Kmt9aind-fl/fl or Kmt9aIEC-fl/fl mice]. One week after the first intra-
peritoneal AOM injection, animals were given ab libitum access to
drinking water with 1.25% dextran sodium sulfate (DSS; MP Bio-
medicals) for seven days followed by another seven days of normal
drinking water, for a total of 5 cycles. A second intraperitoneal AOM
injection was given after the first cycle. For in vivo investigation of
KMT9a, mice were injected with 1 mg of tamoxifen for five days and
fed with tamoxifen containing food during the entire procedure. Body
weight was measured once a week. Following the last cycle of normal
drinkingwater,micewere sacrificed using cervical dislocation. Tumors
were measured with a caliper and tumor volume was calculated by the
formula V ¼ 4/3 � 3.142 � ((widthþlength)/4)3. Tumors were fixed
in 10% formalin for subsequent embedding or alternatively frozen in
liquid nitrogen for subsequent analyses.

Organoid isolation
For establishment of healthy colon organoids, colonic crypts

of C57BL/6 mice were isolated as described previously (25). For

generation of APKK (ApcKO/KrasG12D/p53KO/Kmt9aKO) and APK
(ApcKO/KrasG12D/p53KO) organoids, colonic crypt of Apcfl/fl p53fl/fl

KrasG12D/þ Kmt9afl/fl, and Apcfl/fl p53fl/fl KrasG12D/þ Kmt9aþ/þ mice
were isolated as described previously (25). The deletion of the floxed
sequences was mediated by infection with Cre-expressing adenovirus
(BioCat GmbH). For generation of AOM/DSS tumor organoids,
colonic tumors were excised from Kmt9awt/wt or Kmt9aind-fl/fl mice
after AOM/DSS treatment. Tumor tissue wasmanually dissected and a
single-cell suspension containing tumor stem cells was generated using
theTumourDissociationKit,mouse (Miltenyi Biotec) according to the
manufacturer’s protocol. Patient-derived organoids (PDO) were iso-
lated from human colorectal cancer tissue using Tumor Dissociation
Kit, human (Miltenyi Biotec) according to the manufacturer’s proto-
col. The single cells obtained were resuspended in a solution contain-
ing growth factor-reducedMatrigel (Corning) andAdvanced DMEM-
F12 medium (Thermo Fisher Scientific) in a 1:1 ratio. For each dome,
approximately 1,000 cells were seeded in a 50 mL drop of Matrigel/
Advanced DMEM-F12 in 24-well plates. The Matrigel was allowed to
polymerize at 37�C for 20 minutes and then covered with 600 mL of
culture medium.

Organoid culture
Healthy colon organoids and colorectal cancer PDOs were main-

tained in IntestiCult Organoid Growth Medium [Stemcell Technol-
ogies, catalog #06005 (for mouse organoids) and catalog #06010
(for human organoids)] supplemented with penicillin/streptomycin.
Mouse tumor organoids weremaintained in basal medium [Advanced
DMEM-F12 supplemented with penicillin/streptomycin, HEPES
10 mmol/L (Invitrogen), Glutamax 1� (Invitrogen), N2 1� (Gibco),
B27 1� (Gibco), and N-acetylcysteine 1 mmol/L (Sigma)]. For
AOM/DSS tumor organoids, the basal medium was supplemented
with 50 ng/mL EGF (Peprotech). After 3 to 5 passages, the organoids
were frozen and cryopreserved as stocks for future experiments. In
general, the organoids were used between passage numbers 7 and 15.
For in vitro deletion of Kmt9a, AOM/DSS tumors organoids were
treated with 1 mmol/L 4-hydroxytamoxifen or EtOH (vehicle) as a
control. Mouse and human organoids were subcultured in Matrigel
every 5–7 days or every 14 days, respectively.

Chromatin immunoprecipitation and sequencing
Chromatin immunoprecipitation (ChIP) experiments were per-

formed as previously described (26). Two days after seeding,
AOM/DSS tumor organoids were incubated with 1 mmol/L tamoxifen
or EtOH (vehicle) as a control. Five days after tamoxifen incubation,
organoids were dissociated into single-cell suspension using TrypLE
(Gibco). Cell pellets were washed twice with cold PBS, cross-linked
with 1%PFA for 15minutes at 4�C, and then rinsed twice with ice-cold
PBS. The pellets were resuspended in TSE I buffer (20 mmol/L Tris-
HCL pH 8, 2 mmol/L EDTA, 150 mmol/L NaCL, 0.1% SDS, and 1%
Triton X-100) and sonicated for 1 hour at 4�C (Bioruptor, Diagenode).
Immunoprecipitation was performed with GammaBind G-Sepharose
beads (GE-Healthcare) and specific antibodies for anti-KMT9a
(#27630, lot 20062017, Sch€ule Lab); anti-H4K12me1 (#27429, lot
27062017, Sch€ule Lab); anti-KMT9b (#28358, lot 03042018, Sch€ule
Lab). Libraries were prepared from immunoprecipitated DNA accord-
ing to standard methods. ChIP sequencing (ChIP-seq) libraries were
sequenced using aHiSeq 2000 (Illumina) at the sequencing core facility
of the MPI-IE, Freiburg. Reads were aligned to the mm10 build of the
mouse genome using Bowtie 2 (RRID:SCR_016368; ref. 27). Data were
further analyzed using the peak finding algorithm MACS 1.42 (28)
using input as control. All peaks with FDR greater than 2.0% were
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excluded from further analysis. The reads were used to generate
the genome-wide intensity profiles, which were visualized using the
IGV genome browser (29). HOMER (RRID:SCR_010881; ref. 30) was
used to annotate peaks (annotatePeaks.pl) and to calculate overlaps
between different peak files (mergePeaks). The genomic features
(promoter, exon, intron, 30UTR, and intergenic regions) were defined
using Refseq (RRID:SCR_003496). Seqplots (https://github.com/
Przemol/seqplots) was used to visualize the signals in heatmaps.
Data are deposited under GSE150506.

Single-cell mRNA sequencing
Two days after seeding, Kmt9aind-fl/fl AOM/DSS tumor organoids

were treated with 1 mmol/L tamoxifen or EtOH (vehicle) as a control.
Five days later, the organoids were dissociated into single-cell suspen-
sions using TrypLE for 20 minutes at 37�C. After dissociation, single-
cell suspensions were washed twice in PBS, centrifugated for 5minutes
at 300� g, and counted using a LUNA automated cell counter (Logos
Biosystems). Single cell capture, reverse transcription, and library
preparation were carried out on the Chromium platform (10� Geno-
mics) with the single-cell 30 reagent v2 protocol according to the
manufacturer’s recommendations using 1 � 104 cells as input per
reaction well. The two final libraries [tamoxifen/EtOH (vehicle)] were
pooled and sequenced on two Illumina NovaSeq SP lanes (paired-end
26 bpþ 96 bp). Raw sequencing data were processed and aligned to the
mouse genome (mm10) using the CellRanger pipeline (10x Genomics
version 3.1, SCR_017344). Data are deposited under GSE150506.
Previously published single-cell mRNA sequencing (scRNA-seq) data
from 23 Korean patients with colorectal cancer (GSE132435) were
analyzed using Seurat v3 as described above (31). Details regarding the
analysis of scRNA-seq data can be found in the Supplementary
Materials and Methods.

RNA sequencing
RNA from AOM/DSS organoids treated with tamoxifen or EtOH

(vehicle), APK and APKK tumor organoids, miCtrl or miKMT9a
transduced-PDO organoids, and normal colonic epithelial cells was
isolated using RNeasy Mini columns (Qiagen). Total RNA from
KMT9a-proficient and -deficient AOM/DSS tumors (n ¼ 5 for each
group) was isolated using TRIzol (Invitrogen). RNA samples were
sequenced by the standard Illumina protocol to create raw sequence
files (.fastq files) at Novogene, London. Reads were aligned to the
mm10 build of the mouse genome using STAR version 2.7 (RRID:
SCR_004463; ref. 32). The aligned reads were counted with HOMER
software (RRID:SCR_010881; analyzeRepeats) and differentially
expressed genes were identified using EdgeR (RRID:SCR_012802;
ref. 33). RNA sequencing (RNA-seq) experiments from tumor orga-
noids were performed in biological triplicates. P values <10–6 were
considered as statistically significant. For transcriptome analyses from
whole-tumor tissue of AOM/DSS tumors, the 3,000 most significantly
deregulated transcripts (2,306 genes) were used to perform gene set
enrichment analyses (GSEA; RRID:SCR_003199). Data are deposited
under GSE150506.

Protein isolation and Western blot analysis
Fresh-frozen human tumor and adjacent healthy colonic tissuewere

provided by the Ontario Tumour Bank, which is supported by the
Ontario Institute for Cancer Research through funding provided by
the Government of Ontario. Tissue was kept on ice and manually
dissected and minced for subsequent RIPA lysis. For total protein
isolation from organoids, Matrigel-cultured organoids were harvested
using TrypLE to break up the domes and were washed with

PBS. Organoids and human tissue were lysed in ice-cold RIPA buffer
(1mmol/L EDTA, 50mmol/L Tris-HCl pH7.5, 0.1% SDS, 150mmol/L
NaCl, 1% NP-40, 1% sodium deoxycholate) containing complete
EDTA-free Protease Inhibitor Cocktail (Roche) for 10 minutes on
ice. After centrifugation for 10 minutes at 13,000 rpm at 4�C, super-
natant was collected and protein concentration was determined using
Bradford assay. The list of the antibodies used forWestern blot analysis
can be found in the Supplementary Materials and Methods.

Study approvals
Experimental mice were housed in the pathogen-free barrier

facility of the University Medical Center Freiburg in accordance
with institutional guidelines and all experiments were approved by
the regional board.

Human tumor organoids were established at Georg-Speyer-403
Haus from fresh human tumor tissue according to regional
regulations and the experiments were approved by the regional ethics
committee (Ethikkommission Universit€atsklinikum Frankfurt/Main
274/18). Informed consent was obtained from all donors of tissue.

Statistical analysis
Data are represented as mean � SEM. Significance was calculated

by two-tailed Student t test, by one-way ANOVA, and Tukey
multiple comparisons test as indicated in the figure legends.
Statistical significance was set to P < 0.05 and is represented as
following: ����, P < 0.0001; ���, P < 0.001; ��, P < 0.01; �, P < 0.05;
ns, not significant. Sample sizes are indicated where appropriate.

Additional methods
Additional methods including virus production and organoid

transduction, organoid size assessment, colonic epithelial cells isola-
tion, core histone isolation, list of the antibodies used forWestern blot
analysis, cell proliferation assay, flow cytometry, quantitative RT-PCR
analysis, scRNA-seq, hematoxylin and eosin, and immunohistochem-
ical staining and TUNEL assay can be found in the Supplementary
Materials and Methods.

Data availability statement
To ensure data availability, all RNA-seq, scRNA-seq, and ChIP-seq

data have been deposited at GEO under GSE150506. All data that
support the findings of this study are available from the corresponding
authors upon reasonable request without any restrictions.

Availability of materials
All unique materials are readily available from the authors without

any restrictions.

Results
Colorectal tumorigenesis is modulated by KMT9a

To investigate whether KMT9 plays a functional role in colorectal
cancer, we profiled KMT9a and KMT9bmRNA expression in healthy
human colon and primary colon adenocarcinoma tissues. A large
cohort TCGA (34) of 256 patients with colorectal cancer revealed a
significant increase in both KMT9a and KMT9b mRNA in colorectal
cancer tissue compared with healthy colon (Fig. 1A and B). CMS
stratification revealed significant overexpression ofKMT9a in CMS2-,
CMS3-, andCMS4- but not inCMS1-tumors, whereasKMT9bmRNA
was significantly increased in all subtypes (Supplementary Fig. S1A–
S1C). Moreover, Western blot analyses showed that both KMT9a and
KMT9b protein levels were strongly increased in human colorectal
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Figure 1.

Colorectal tumorigenesis is modulated by KMT9a.A andB,KMT9a (A) andKMT9b (B)mRNA expression in healthy human colon (n¼ 39) and colon adenocarcinoma
(n ¼ 217) from patients with colorectal cancer. Data were retrieved from TCGA database. C,Western blot showing the expression of KMT9a and KMT9b in human
colorectal cancer tumors and patient-matched healthy colon tissue.D,Western blot showing tamoxifen (Tam)–dependent deletion of KMT9a in three individual (#1,
#2, and#3)AOM/DSS tumor organoid cultures,where control (Ctrl) AOM/DSS tumor organoids showednoKMT9a loss.E,Representative images of Kmt9awt/wt and
Kmt9aind-fl/fl AOM/DSS tumor organoids (#3) cultured in the presence of vehicle or tamoxifen for 7 days. Scale bars, 50 mm (left). Right, relative size of tumor
organoids cultured in the presence of vehicle or tamoxifen. F, Schematic summarizing the treatment course of Kmt9aIEC-wt/wt and Kmt9aIEC-fl/flmice with AOM and
DSS to induce inflammation-associated tumors. KMT9a deletion in Kmt9aIEC-KOmice was induced with tamoxifen. Kmt9aIEC-WT mice treated with tamoxifen served
as controls. G, KMT9a protein levels in healthy murine colon (n¼ 11) and AOM/DSS tumors (n¼ 11) of Kmt9aIEC-WT mice are shown by immunohistochemistry (left)
and quantification of the data (right). H, Representative images showing fewer tumors (black arrowheads) in the colon of Kmt9aIEC-KO mice compared with
Kmt9aIEC-WT mice. Graphs show the incidence of microscopic (<0.5 mm3) and macroscopic (>0.5 mm3) tumors (left), tumor size (middle), and relative tumor mass
(right) for Kmt9aIEC-WT (n ¼ 9) and Kmt9aIEC-KO (n ¼ 10) mice. I, Intratumoral expression of Kmt9a mRNA was analyzed by qRT-PCR from AOM/DSS tumors of
Kmt9aIEC-WT and Kmt9aIEC-KOmice (n¼ 8 tumors/group). J, Immunohistochemical staining of proliferationmarker Ki67 in Kmt9aIEC-WT and Kmt9aIEC-KO AOM/DSS
tumors (left) and quantification of the percentage of Ki67-positive nuclei (right). Scale bars, 100mm, n¼ 15 (Kmt9aIEC-WT) and n¼ 7 (Kmt9aIEC-KO)AOM/DSS tumors.
K, TUNEL staining showing apoptosis in Kmt9aIEC-KO AOM/DSS tumors in comparison with Kmt9aIEC-WT control tumors (n ¼ 11 tumors/group). All data represent
means � SEM; � , P < 0.05; �� , P < 0.01; ��� , P < 0.001; ����, P < 0.0001; two-tailed Student t test. CRC, colorectal cancer.
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cancer tissue compared with patient-matched healthy colon (Fig. 1C).
We therefore hypothesized that KMT9 might play a functional role in
colorectal tumorigenesis.

Because KMT9a is indispensable for KMT90s histone methyltrans-
ferase activity (22), we engineeredmice with conditionalKmt9a alleles
by flanking exon 2 and 3 with loxP sites (Kmt9afl/fl) to unravel
potential functions of KMT9 in colorectal tumorigenesis. For initial
experiments, Kmt9afl/fl mice were crossed to the Rosa26-CreERT2
deleter strain (35) to produce Kmt9aind-fl/fl mice for tamoxifen-
inducible deletion of Kmt9a. Crosses of mice with Kmt9a wild-type
(wt) alleles to Rosa26-CreERT2mice, referred to as Kmt9awt/wt, served
as controls. We treated Kmt9aind-fl/fl and Kmt9awt/wt mice with AOM
andDSS to induce inflammatory colorectal tumor growth (36, 37) and
established three-dimensional (3D) epithelial organoid cultures from
AOM/DSS–associated tumors (Supplementary Fig. S1D). In the
absence of tamoxifen treatment, KMT9a and KMT9b protein levels
were increased in four independent AOM/DSS tumor organoids
from Kmt9awt/wt (Ctrl) and Kmt9aind-fl/fl (#1, #2, #3) mice com-
pared with healthy colon organoids (Supplementary Fig. S1E). This
increase is in accordance with observations we made in human
patient samples (Fig. 1A–C). Following tamoxifen treatment,
KMT9a protein was efficiently depleted in the three independent
Kmt9aind-fl/fl AOM/DSS tumor organoids compared with control
Kmt9awt/wt AOM/DSS tumor organoids (Fig. 1D). Importantly,
upon loss of KMT9a, AOM/DSS tumor organoids displayed a
shrinkage in size (Fig. 1E), and the proliferation rate was strongly
decreased (Supplementary Fig. S1F).

To investigate whether KMT9a loss affects tumor formation and
growth in vivo, Kmt9afl/fl mice were crossed to the Villin1 (Vil1)-
CreERT2 deleter strain (38), which allows tamoxifen-inducible dele-
tion of Kmt9a specifically in intestinal epithelial cells (IEC) of
Kmt9aIEC-fl/fl mice (Fig. 1F). Tamoxifen-treated Kmt9aIEC-fl/fl mice
were compared with tamoxifen-treated Kmt9aIEC-wt/wt mice (hereaf-
ter termed Kmt9aIEC-KO and Kmt9aIEC-WT, respectively). Upon
AOM/DSS treatment, Kmt9aIEC-WTmice developed colorectal tumors
as expected (36, 37). Immunohistochemical and qRT-PCR analyses of
the tumors observed in Kmt9aIEC-WT mice revealed a significant
increase in KMT9a mRNA and protein levels in AOM/DSS tumors
compared with adjacent healthy tissue (Fig. 1G; Supplementary
Fig. S1G). In contrast to Kmt9aIEC-WT mice, Kmt9aIEC-KO animals
displayed a dramatic decrease in tumor burden characterized by a
reduced number of microscopic and macroscopic colon tumors per
mouse as well as a significantly smaller tumor size andmass (Fig. 1H).
The few small tumors found in Kmt9aIEC-KO mice displayed reduced
Kmt9a expression in comparison with tumors in Kmt9aIEC-WT mice
(Fig. 1I). Analysis of cell proliferation and apoptosis showed that
KMT9a-depleted tumors had reduced levels of proliferation
marker KI67 (Fig. 1J) and increased apoptotic activity
(Fig. 1K). In the absence of AOM/DSS treatment, colon tissue
from Kmt9aIEC-KO and Kmt9aIEC-WT mice did not show any
apparent morphologic differences (Supplementary Fig. S1H and
S1I). Moreover, proliferation analysis of healthy colon crypts by
KI67 staining did not reveal any significant differences between
Kmt9aIEC-WT and Kmt9aIEC-KO mice without AOM/DSS treat-
ment (Supplementary Fig. S1J). More importantly, transcriptome
analysis performed on purified epithelial colon cells from AOM/
DSS treatment-na€�ve Kmt9aIEC-WT and Kmt9aIEC-KO mice
revealed only 12 significantly differentially expressed genes in
KMT9a-deficient compared with KMT9a-proficient colon, there-
by emphasizing the specific role of KMT9a in colorectal tumor
tissue (Supplementary Table S2). Together, these data demon-

strate that inflammation-associated colorectal tumorigenesis in
mice is controlled by KMT9a.

KMT9a controls the expression of cell-cycle genes in AOM/DSS
tumors and organoids

To gainmechanistic insight intoKMT9a-mediated gene regulation,
we determined the transcriptomes of vehicle- and tamoxifen-treated
Kmt9aind-fl/fl AOM/DSS tumor organoids by RNA-seq. The intersec-
tion of the differentially expressed gene sets for the three Kmt9aind-fl/fl

tumor organoids revealed a commonpool of 1,183KMT9a-dependent
genes (Fig. 2A). GSEA for these 1,183 genes uncovered terms asso-
ciated with “cell cycle” and “apoptosis” as significantly deregulated
biological processes (Fig. 2B). Accordingly, we found a significant
downregulation of numerous genes involved in cell-cycle control in
KMT9a-depleted AOM/DSS tumor organoids (Fig. 2C). qRT-PCR
analysis validated reduced expression of cell-cycle regulators such as
aurora kinase b (Aurkb), e2f transcription factor 1 (E2f1), establish-
ment of sister chromatid cohesion N-acetyltransferase 2 (Esco2),
minichromosome maintenance complex component 6 (Mcm6), pcna
clamp associated factor (Pclaf), proline rich 11 (Prr11), rad51 paralog c
(Rad51c), replication protein a2 (Rpa2), and dna topoisomerase II
alpha (Top2a) upon KMT9a loss (Supplementary Fig. S2A). To
validate these findings, we analyzed whether KMT9a depletion in
AOM/DSS tumor organoids resulted in changes to the cell-cycle phase
distribution by flow cytometry. KMT9 depletion was associated with
an increase in G0–G1 cells and a reduction of the S-phase population
(Fig. 2D), which suggests that loss of KMT9 decreased cell prolifer-
ation. Importantly, these analyses also revealed an early apoptotic sub-
G0 population in the KMT9a-depleted tumor organoids, which is
consistent with our in vivo findings (Fig. 1K). Analysis of the repre-
sentative AOM/DSS tumor organoids #3 uncovered significant upre-
gulation of proapoptotic genes upon KMT9a depletion (Supplemen-
tary Fig. S2B). Upregulation of genes such as phorbol-12-myristate-13-
acetate-induced protein 1 (Pmaip1) and transforming growth factor
beta 2 (Tgfb2) was verified by qRT-PCR (Supplementary Fig. S2C).
Further supporting the notion that KMT9a depletion promotes
apoptosis of AOM/DSS tumor organoids, we detected an increase in
cleaved caspase-3 levels (Supplementary Fig. S2D) and in Annexin V–
positive (Annexin Vþ) and DAPI-negative (DAPI–) apoptotic cells
(Supplementary Fig. S2E) upon loss of KMT9a. Because KMT9 writes
the H4K12me1 histone mark, we asked whether ablation of KMT9a
resulted in decreased H4K12me1 levels. Western blot analyses showed
a strong decrease in H4K12me1 in KMT9a-depleted AOM/DSS
tumor organoids #3 (Supplementary Fig. S2F). To investigate whether
the differentially regulated cell-cycle genes identified were direct
KMT9 target genes, we analyzed the genomic localization of KMT9a,
KMT9b, and H4K12me1 by ChIP-seq in AOM/DSS tumor organoids
#3. We uncovered 5,652 KMT9a, KMT9b, and H4K12me1 colocali-
zations (Fig. 2E) that were enriched around the transcription start site
(TSS) of target genes (Fig. 2F). In total, we observed the presence of
KMT9a, KMT9b, and H4K12me1 at the promoter of 3,239 genes
(Fig. 2E). Intersection of these 3,239 targets with the 5,882 differen-
tially expressed genes observed for AOM/DSS tumor organoids #3
uncovered 1,168 differentially expressed, direct KMT9 target genes
(Fig. 2G). GSEA of the direct KMT9 targets revealed a significant
enrichment of terms related to cell cycle (Fig. 2H). For instance, direct
target genes with promoter presence of KMT9a, KMT9b, and
H4K12me1 included cell-cycle regulators described above such as
Aurkb,Mcm6, Prr11,Rad51c, andRpa2 (Fig. 2I andC; Supplementary
Fig. S2A). Importantly, global transcriptome analysis performed from
whole colorectal tumor tissue obtained from AOM/DSS–treated
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Figure 2.

KMT9a controls expression of cell-cycle genes in AOM/DSS tumors and organoids.A, Intersection of genes differentially expressed in Kmt9aind-fl/flAOM/DSS tumor
organoid cultures (#1, #2, and #3) upon KMT9a depletion induced by tamoxifen (P < 1e–6). B, Enriched biological processes obtained for the 1,183 common
differentially expressed genes in AOM/DSS tumor organoids #1, #2, and #3.C,Heatmap showing the differential expression of genes involved in cell-cycle regulation
upon KMT9a depletion from three individual AOM/DSS tumor organoid cultures. FC, fold change.D, Cell-cycle distribution of the three separate Kmt9aind-fl/flAOM/
DSS tumor organoid cultures in the presence of vehicle or tamoxifen. Cell-cycle phases were determined by flow cytometry using BrdU incorporation and 7-AAD
staining. n ¼ 3 independent experiments. Data represent � SEM. � , P < 0.05; two-tailed Student t test. E, Heatmaps of ChIP-seq read density for the 5,652 KMT9a,
KMT9b, andH4K12me1 colocations observed inAOM/DSS tumor organoids #3.F,AverageKMT9a, KMT9b, andH4K12me1 ChIP-seq read density profiles inAOM/DSS
tumor organoids #3. G, Direct KMT9 target genes (1,168) identified by comparing genes with KMT9a, KMT9b, and H4K12me1 localized at promoter regions to
differentially expressed genes upon KMT9a depletion. H, Enriched biological processes obtained for the direct KMT9 target genes. I, ChIP-seq tracks showing the
presence of KMT9a, KMT9b, and H4K12me1 at promoters of representative genes in AOM/DSS tumor organoids #3. �, P < 0.05. Tam, tamoxifen.
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Kmt9aIEC-WT and Kmt9aIEC-KO mice also revealed cell-cycle regula-
tion by KMT9, which is consistent with our data obtained from
AOM/DSS organoids (Supplementary Fig. S2G and S2H). Together,
our data show that KMT9 directly controls cell-cycle progression with
a concomitant control of apoptotic state.

KMT9a controls stemness and stem cell maintenance in
AOM/DSS tumors and organoids

CSCs are essential for tumor initiation and maintenance, and
thereby responsible for tumor relapse and treatment failure in patients
with colorectal cancer (7, 39). To investigate whether KMT9a deple-
tion would impact CSC function, we analyzed the expression of
intestinal stem cell markers in AOM/DSS tumors from Kmt9aIEC-WT

and Kmt9a
IEC-KO

mice using a previously described Lgr5 intestinal stem
cell (ISC) signature (40). GSEA revealed significant negative enrich-
ment of the intratumoral ISC signature upon loss of KMT9a (Fig. 3A).
Indeed, a total of 30 ISC-related genes were significantly downregu-
lated in KMT9a-depleted compared with KMT9a-proficient tumors,
notably Apcdd1, Dach1, and Rhobtb3, which are previously described
regulators of stemness in colorectal cancer (Fig. 3B; refs. 41–43).
Importantly, GSEA performed on vehicle- and tamoxifen-treated
Kmt9aind-fl/fl AOM/DSS tumor organoids also uncovered a negative
enrichment of the Lgr5 signature with 117 stem cell–related genes
significantly downregulated upon KMT9a depletion (Fig. 3C andD).
To elucidate the transcriptomic underpinnings of KMT9 function in
theCSCpopulation, we performed scRNA-seq onKmt9aind-fl/flAOM/
DSS tumor organoids cultured in the presence of EtOH (vehicle) or
tamoxifen. Using a droplet-based microfluidics platform, we obtained
2,340 KMT9a-proficient and 1,303 KMT9a-deficient cells after qual-
ity filtering (Supplementary Fig. S3A–S3D). By performing unsuper-
vised clustering and two-dimensional embedding using uniform
manifold approximation and projection (UMAP), we identified four
tumor cell subpopulations based on the expression of established
marker genes (11, 40, 44, 45) and the differentiation states by pseu-
dotime analysis: a “stem cell” (STEM) population (cluster 1), “cycling
progenitor” (CP) population (cluster 2), a “transit-amplifying” (TA)
cell population (cluster 3), and a “differentiated” (DIFF) cell popula-
tion (cluster 4; Fig. 3E; Supplementary Fig. S3E–S3L). Population-
dependent gene expression analyses showed ubiquitousKmt9amRNA
expression in all four cell populations and marked decrease in Kmt9a
mRNA in KMT9a-deficient cells relative to KMT9a-proficient cells
(Fig. 3F). Analysis of the cycle phase distribution based on the
expression of cell-cycle marker genes (Supplementary Fig. S3M) was
in agreement with the role of KMT9a in cell-cycle regulation described
above (Fig. 2D). Furthermore, in accordance with the bulk RNA-seq
data, we observed downregulation of essential S-phase genes such as
Mcm6 and Rpa2 by scRNA-seq upon KMT9a depletion (Supplemen-

tary Fig. S3N). Interestingly, numerous stem cell–related genes listed in
the previously described Lgr5þ ISC signature (40) were downregu-
lated upon loss of KMT9a in both precursor populations (Fig. 3G
andH). In addition, we observed increased expression of proapoptotic
genes in KMT9a-deficient STEM and CP populations, emphasizing
the relevant role of KMT9 in tumoral stem cell maintenance (Fig. 3I;
Supplementary Table S3). These data suggest that loss of KMT9a
might affect the self-renewal potential and colony formation capacity
of tumor stem/initiating cells. To test this hypothesis, single cells
isolated from KMT9a-proficient and deficient AOM/DSS tumor
organoids were evaluated for anchorage-independent sphere forma-
tion in a secondary replating assay. Importantly, the secondary sphere
formation capacity of cells derived from KMT9a-deficient organoids
was blocked (Fig. 3J).

To corroborate these findings in vivo, we crossed Kmt9afl/fl

mice with the Lgr5-EGFP-IRES-CreERT2 deleter strain (11) for
tamoxifen-inducible selective Kmt9a ablation in intestinal Lgr5þ stem
cells. Tamoxifen-treated mice were challenged with AOM/DSS
and Lgr5-expressing CSCs were intratumorally traced in vivo using
enhanced green fluorescent protein (EGFP) reporter. In accordance
with our hypothesis, we found that the percentage of viable Lgr5-
EGFP–positive (Lgr5-EGFPþ) CSCs was markedly decreased upon
Kmt9a loss in the collected tumors (Fig. 3K). All together, our data
demonstrate the importance of KMT9 in maintaining the self-
renewal potential and viability of tumor stem/initiating cells.

KMT9a is a potential therapeutic target for the treatment of
colorectal cancer

Besides inflammation-induced colorectal tumorigenesis, sporadic
colorectal cancer results from the progressive accumulation of genetic
and epigenetic alterations (3, 46). To investigate whether KMT9 loss
also affects sporadic colorectal carcinogenesis driven by key human
colorectal cancer mutations, we generated epithelial tumor organoids
fromApcfl/fl p53fl/flKrasG12D/þKmt9afl/fl andApcfl/fl p53fl/flKrasG12D/
þ Kmt9aþ/þ mice. Transduction of organoids with cre-expressing
adenovirus resulted in APKK (ApcKO/p53KO/KrasG12D/Kmt9aKO)
and APK (ApcKO/p53KO/KrasG12D/Kmt9aWT) colorectal cancer orga-
noids. In line with our results presented above, we observed a severe
impairment in growth for KMT9a-deficient APKK organoids in
comparison with KMT9a-proficient APK colorectal cancer organoids
(Fig. 4A), suggesting a critical role for KMT9 in sporadic tumor
progression. To unravel the mechanistic role of KMT9a in sporadic
colorectal cancer, we performed RNA-seq in APK and APKK orga-
noids. In line with our results obtained with AOM/DSS tumor
organoids, we observed a significant downregulation of genes involved
in cell-cycle progression in APKK organoids (Fig. 4B). Furthermore,
we identified 124 stem cell–related genes significantly downregulated

Figure 3.
KMT9a controls stemness and stem cell maintenance in AOM/DSS tumors and organoids. A, GSEA of differentially expressed genes in AOM/DSS tumors from
Kmt9aIEC-KO comparedwith tumors fromKmt9aIEC-WTmice uncovered significant negative enrichment of the Lgr5 ISC gene signature.B,Heatmap showing reduced
expression of stem cell–related genes upon KMT9a loss in AOM/DSS tumors. C,GSEA of differentially expressed genes in AOM/DSS tumor organoids #3 (vehicle vs.
tamoxifen). D, Heatmap showing mRNA levels of stem cell–related genes significantly downregulated by KMT9a depletion in AOM/DSS tumor organoids. FC, fold
change; P < 1e–6. E, UMAP plot showing the four subpopulations, stem cells (STEM; cluster 1), cycling progenitor cells (CP; cluster 2), transit-amplifying cells (TA;
cluster 3), anddifferentiated cells (DIFF; cluster 4) identified in vehicle-treatedKmt9aind-fl/flAOM/DSS tumor organoids by scRNA-seq.F,Violin plots showingKmt9a
levels in the four identified subpopulations of Kmt9aind-fl/flAOM/DSS tumor organoids following vehicle or tamoxifen treatment.G andH,Dot plot of the top 10 stem
cell–related genes downregulated by KMT9a depletion in the STEM (G) and CP (H) populations of AOM/DSS tumor organoids. PE, percent expressed; AE, average
expression. I, Ridge plot representing the relative expression of proapoptotic genes in vehicle- and tamoxifen-treated Kmt9aind-fl/fl STEM and CP populations.
J, Representative images of the secondary organoid-forming capacity of AOM/DSS tumor Kmt9awt/wt (Ctrl) and Kmt9aind-fl/fl (#3) organoids in the presence of
vehicle or tamoxifen (left). Scale bars, 400mm.Right, relative number of secondary organoids after replating normalized to vehicle-treated organoids. Data represent
�SEM. ns, not significant; ��� , P <0.001; two-tailed unpaired t test.K,Contour plots depicting viable EGFPþ/Lgr5þ stem cells in AOM/DSS tumors fromKmt9aLgr5-WT

(n ¼ 4) and Kmt9aLgr5-KO (n ¼ 4) mice. Tam, tamoxifen.
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Figure 4.

KMT9a is a potential therapeutic target for the treatment of colorectal cancer. A, Representative pictures of APK (ApcKO/p53KO/KrasG12D/Kmt9aWT) and APKK
(ApcKO/p53KO/KrasG12D/Kmt9aKO) tumor organoids. Scale bars, 50 mm (left). Top right, normalized size of APK and APKK tumor organoids. Bottom right, Western
blot showing the expression of KMT9a in APK andAPKK tumor organoids.B,Heatmap showing significantly downregulated genes involved in cell-cycle progression
in APK comparedwith APKK tumor organoids. FC, fold change; P < 1e–6.C, PDOswere developed from colorectal cancer tumors of individual patients (#1, #2, #3, #4)
covering CMS2–4 and transduced with lentivirus encoding either control miRNA (miCtrl) or miRNA directed against KMT9a (miKMT9a). D, Reductions in organoid
size were observed for PDOs #1–4 upon KMT9a depletion by miKMT9a relative to miCtrl. All data represent means � SEM. �, P < 0.05; ���� , P < 0.0001; two-tailed
Student t test. E, Heatmap showing significantly downregulated cell-cycle genes in PDOs. FC, fold change; P < 1e–6. F and G, Tumor epithelial cell population from a
previously published single-cell RNA-seq dataset froma cohort of 23 Korean patientswith colorectal cancer stratifiedbyKMT9a expression. Dot plot showing the top
25 cell-cycle genes (F) and stem cell–related genes (G) downregulated in KMT9a-deficient epithelial colorectal cancer cells compared with KMT9a-proficient cells.
AE, average expression; CRC, colorectal cancer; PE, percent expressed.
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by KMT9a depletion (Supplementary Fig. S4A). To corroborate our
data in human colorectal tumors, we established patient-derived
organoid (PDO) cultures from four patients with colorectal cancer
(PDO #1, #2, #3, and #4) representing CMS2, CMS3, and CMS4
tumors (Fig. 4C). We did not consider CMS1 tumors due to the low
expression levels of KMT9a in CMS1 compared with CMS2–4 tumor
samples (Supplementary Fig. S1A). Human PDOs were transduced
with lentivirus driving expression of either control miRNA (miCtrl) or
miRNA directed against KMT9a (miKMT9a) and organoid growth
was analyzed in vitro. Importantly, KMT9a knockdown efficiently
reduced tumor organoid size in all investigated PDOs (Fig. 4D;
Supplementary Fig. S4B and S4C). Consistent with this morphologic
phenotype, transcriptomic analysis of the PDOs revealed a significant
downregulation of genes involved in cell-cycle progression (Fig. 4E),
as well as downregulation of multiple genes involved in CSC function
of colorectal cancer (Supplementary Fig. S4D), thus corroborating the
results obtained in murine inflammation-induced and sporadic
colorectal tumorigenesis. We next investigated the function of
KMT9a in the epithelial compartment of primary tumor tissue
from patients with colorectal cancer. We analyzed single-cell tran-
scriptome data from 23 Korean patients with colorectal cancer
(GSE132435) and stratified epithelial tumor cells in KMT9a-pro-
ficient and KMT9a-deficient cell populations (Supplementary
Fig. S4E; ref. 47). Interestingly, most of the genes involved in
cell-cycle progression and genes downregulated upon depletion of
KMT9a in murine AOM/DSS and in sporadic murine colorectal
cancer organoids, were also downregulated in human epithelial
KMT9a-deficient colorectal cancer cells (Fig. 4F). Furthermore, we
analyzed the LGR5 ISC gene signature (40) and found numerous
signature genes downregulated in epithelial KMT9a-deficient
human colorectal cancer cells (Fig. 4G).

Together, these findings demonstrate a decisive role of KMT9a in
mouse and human sporadic colorectal carcinogenesis and as well as in
inflammation-induced tumorigenesis, thereby identifying inhibition
of KMT9 as a highly promising single-target approach for the treat-
ment of colorectal cancer.

Discussion
In this study, we used mouse models and tumor organoids derived

from mice and human patients as well as human tumor tissue to
uncover an essential role of KMT9, a novel H4K12me1 histone
methyltransferase, in colorectal cancer. Our data show that growth
of inflammation-induced tumors as well as sporadic colorectal cancer
is dramatically reduced in the absence of KMT9a in vitro and in vivo.
While we cannot exclude that additional KMT9 functions could
potentially contribute to the observed phenotype, we demonstrate
that a major consequence of KMT9 loss is the impairment of tumor
growth via disrupting the regulation of genes involved in proliferation,
cell-cycle progression, and apoptosis. So far, we cannot fully rule out
the possibility that the loss of KMT9 is playing a role in the inflam-
matory or regenerative process after AOM/DSS treatment, which
warrants further investigation. Moreover, we have also demonstrated
that KMT9a ablation impairs tumor growth in CMS2-, CMS3-, and
CMS4 PDOs. To date, it is well accepted that the interpatient hetero-
geneity of colorectal cancer has clinical implications on therapeutic
responses (48). Thus, future investigations have to examine different
colorectal cancer subtypes for their responsiveness to targeting KMT9
in vivo.

Besides reduction of tumor growth, elimination of colorectal CSCs
to prevent tumor recurrence andmetastasis remains one of the biggest
clinical challenges in treating colorectal cancer. To date, most ther-
apeutic strategies rely on combination therapy of a CSC-targeting
agent with eradication of tumor mass (49), where targeting of CSCs is
hindered due to its similarity with benign, noncancerous stem cells. In
this study, we showed that in addition to a major impact on inhibiting
tumor growth, targeting KMT9 also downregulated numerous stem
cell–related genes and impaired CSC function andmaintenance. Thus,
inhibition of KMT9 in colorectal cancermay be a promising therapy to
target colorectal CSCs.

Currently, the use of epigenetic drugs asmonotherapy for colorectal
cancer have largely failed to improve patient outcomes (50, 51). The
main issues leading to the failure of these epigenetic agents include
intratumor and interpatient heterogeneity and the essential function of
epigenetic regulators in both malignant and benign cells. Importantly,
we found that without AOM/DSS insult, mice with specific KMT9a
ablation in intestinal epithelial cells survive without a noticeable
phenotype and do not exhibit morphologic changes of the colon
tissue. Thus, weak side effects of KMT9 targeting would be assumed
in the clinical context. In consequence, the development of small-
molecule inhibitors targeting KMT9might be a promising therapeutic
avenue for colorectal cancer treatment.
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